Publications
LEGEND:
blue & bold — Rogala Lab member
Ψ — equal contribution
@ — corresponding author
Structure of the nutrient-sensing hub GATOR2.
Max L ValensteinΨ@, Kacper B RogalaΨ@, Pranav V. Lalgudi, Edward J Brignole, Xin Gu, Robert A Saxton, Lynne Chantranupong, Jonas Kolibius, Jan-Philipp Quast, David M Sabatini.
Nature. 607(7919):610-616. 2022 July 13.
Reveal More
Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 β-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through β-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes. The scaffold orients the WD40 β-propeller dimers, which mediate interactions with Sestrin2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.
PubMed: 35831510 // Journal website [paywalled] // Paywall-free article [via Nature’s SharedIt program]
Deposited structures: 7UHY
Deposited cryo-EM maps: EMD-26519
News on the Whitehead Institute webpages.
Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
Kuang ShenΨ, Kacper B RogalaΨ, Hui-Ting Chou, Rick K Huang, Zhiheng Yu, David M Sabatini@.
Cell. 179(6):1319-1329.e8. 2019 November 27.
Reveal More
mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.
PubMed: 31704029 // Journal website [open access]
Deposited structures: 6ULG
Deposited cryo-EM maps: EMD-20814
News on the Whitehead Institute webpages.
Dispatch article [open access] in Current Biology by Wei Peng and Jenna Jewell.
Structural basis for the docking of mTORC1 on the lysosomal surface.
Kacper B Rogala, Xin Gu, Jibril F Kedir, Monther Abu-Remaileh, Laura F Bianchi, Alexia M S Bottino, Rikke Dueholm, Anna Niehaus, Daan Overwijn, Ange-Célia Priso Fils, Sherry X Zhou, Daniel Leary, Nouf N Laqtom, Edward J Brignole, David M Sabatini@.
Science. 366(6464):468-475. 2019 October 25.
Reveal More
The mTORC1 (mechanistic target of rapamycin complex 1) protein kinase regulates growth in response to nutrients and growth factors. Nutrients promote its translocation to the lysosomal surface, where its Raptor subunit interacts with the Rag guanosine triphosphatase (GTPase)-Ragulator complex. Nutrients switch the heterodimeric Rag GTPases among four different nucleotide-binding states, only one of which (RagA/B•GTP-RagC/D•GDP) permits mTORC1 association. We used cryo-electron microscopy to determine the structure of the supercomplex of Raptor with Rag-Ragulator at a resolution of 3.2 angstroms. Our findings indicate that the Raptor α-solenoid directly detects the nucleotide state of RagA while the Raptor “claw” threads between the GTPase domains to detect that of RagC. Mutations that disrupted Rag-Raptor binding inhibited mTORC1 lysosomal localization and signaling. By comparison with a structure of mTORC1 bound to its activator Rheb, we developed a model of active mTORC1 docked on the lysosome.
PubMed: 31601708 // Journal website [paywalled] // Paywall-free article [PMC]
Deposited structures: 6U62
Deposited cryo-EM maps: EMD-20660
Featured in the 2021 edition of the Lodish et al. Molecular Cell Biology textbook.
News on the Whitehead Institute and the MIT webpages.
Two independent F1000 recommendations.
Spotlight article [paywalled] in Trends in Biochemical Sciences by Jin Park, Gina Lee, and John Blenis. Paywall-free article [PMC].
Dispatch article [open access] in Current Biology by Wei Peng and Jenna Jewell.
Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
Madhanagopal Anandapadamanaban, Glenn R Masson, Olga Perisic, Alex Berndt, Jonathan Kaufman, Chris M Johnson, Balaji Santhanam,
Kacper B Rogala, David M Sabatini, Roger L Williams@.
Science. 366(6462):203-210. 2019 October 11.
Reveal More
The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.
PubMed: 31601764 // Journal website [paywalled] // Paywall-free article [PMC]
News on the MRC Laboratory of Molecular Biology webpages.
Two independent F1000 recommendations.
Dispatch article [open access] in Current Biology by Wei Peng and Jenna Jewell.
Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly.
Sarah BianchiΨ, Kacper B RogalaΨ, Nicola J DynesΨ, Manuel Hilbert, Sebastian A Leidel, Michel O Steinmetz, Pierre Gönczy, Ioannis Vakonakis@.
Molecular Biology of the Cell. 29(6):722-735. 2018 March 15.
Reveal More
Centrioles are microtubule-based organelles that organize the microtubule network and seed the formation of cilia and flagella. New centrioles assemble through a stepwise process dependent notably on the centriolar protein SAS-5 in Caenorhabditis elegans SAS-5 and its functional homologues in other species form oligomers that bind the centriolar proteins SAS-6 and SAS-4, thereby forming an evolutionarily conserved structural core at the onset of organelle assembly. Here, we report a novel interaction of SAS-5 with microtubules. Microtubule binding requires SAS-5 oligomerization and a disordered protein segment that overlaps with the SAS-4 binding site. Combined in vitro and in vivo analysis of select mutants reveals that the SAS-5-microtubule interaction facilitates centriole assembly in C. elegans embryos. Our findings lead us to propose that the interdependence of SAS-5 oligomerization and microtubule binding reflects an avidity mechanism, which also strengthens SAS-5 associations with other centriole components and, thus, promotes organelle assembly.
PubMed: 29367435 // Journal website [open access]
Cross-linking mass spectrometry identifies new interfaces of Augmin required to localise the γ-tubulin ring complex to the mitotic spindle.
Jack W C Chen, Zhuo A Chen, Kacper B Rogala, Jeremy Metz, Charlotte M Deane, Juri Rappsilber@, James G Wakefield@.
Biology Open. 6(5):654-663. 2017 May 15.
Reveal More
The hetero-octameric protein complex, Augmin, recruits γ-Tubulin ring complex (γ-TuRC) to pre-existing microtubules (MTs) to generate branched MTs during mitosis, facilitating robust spindle assembly. However, despite a recent partial reconstitution of the human Augmin complex in vitro, the molecular basis of this recruitment remains unclear. Here, we used immuno-affinity purification of in vivo Augmin from Drosophila and cross-linking/mass spectrometry to identify distance restraints between residues within the eight Augmin subunits in the absence of any other structural information. The results allowed us to predict potential interfaces between Augmin and γ-TuRC. We tested these predictions biochemically and in the Drosophila embryo, demonstrating that specific regions of the Augmin subunits, Dgt3, Dgt5 and Dgt6 all directly bind the γ-TuRC protein, Dgp71WD, and are required for the accumulation of γ-TuRC, but not Augmin, to the mitotic spindle. This study therefore substantially increases our understanding of the molecular mechanisms underpinning MT-dependent MT nucleation.
PubMed: 28351835 // Journal website [open access]
Probing the solution structure of IκB kinase (IKK) subunit γ and its interaction with Kaposi sarcoma-associated herpes virus Flice-interacting protein and IKK subunit β by EPR spectroscopy.
Claire Bagnéris, Kacper B Rogala, Mehdi Baratchian, Vlad Zamfir, Micha B A Kunze, Selina Dagless, Katharina F Pirker, Mary K Collins, Benjamin A Hall@, Tracey E Barrett@, Christopher W M Kay@.
Journal of Biological Chemistry. 290(27):16539-49. 2015 July 3.
Reveal More
Viral flice-interacting protein (vFLIP), encoded by the oncogenic Kaposi sarcoma-associated herpes virus (KSHV), constitutively activates the canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) pathway. This is achieved through subversion of the IκB kinase (IKK) complex (or signalosome), which involves a physical interaction between vFLIP and the modulatory subunit IKKγ. Although this interaction has been examined both in vivo and in vitro, the mechanism by which vFLIP activates the kinase remains to be determined. Because IKKγ functions as a scaffold, recruiting both vFLIP and the IKKα/β subunits, it has been proposed that binding of vFLIP could trigger a structural rearrangement in IKKγ conducive to activation. To investigate this hypothesis we engineered a series of mutants along the length of the IKKγ molecule that could be individually modified with nitroxide spin labels. Subsequent distance measurements using electron paramagnetic resonance spectroscopy combined with molecular modeling and molecular dynamics simulations revealed that IKKγ is a parallel coiled-coil whose response to binding of vFLIP or IKKβ is localized twisting/stiffening and not large-scale rearrangements. The coiled-coil comprises N- and C-terminal regions with distinct registers accommodated by a twist: this structural motif is exploited by vFLIP, allowing it to bind and subsequently activate the NF-κB pathway. In vivo assays confirm that NF-κB activation by vFLIP only requires the N-terminal region up to the transition between the registers, which is located directly C-terminal of the vFLIP binding site.
PubMed: 25979343 // Journal website [open access]
Misato controls mitotic microtubule generation by stabilizing the TCP-1 Tubulin chaperone complex.
Valeria Palumbo, Claudia Pellacani, Kate J Heesom, Kacper B Rogala, Charlotte M Deane, Violaine Mottier-Pavie, Maurizio Gatti, Silvia Bonaccorsi@, James G Wakefield@.
Current Biology. 25(13):1777-83. 2015 June 29.
Reveal More
Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs.
PubMed: 26096973 // Journal website [open access]
The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation.
Kacper B Rogala, Nicola J Dynes, Georgios N Hatzopoulos, Jun Yan, Sheng Kai Pong, Carol V Robinson, Charlotte M Deane, Pierre Gönczy@, Ioannis Vakonakis@.
eLife. 4:e07410. 2015 May 29.
Reveal More
Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo.
PubMed: 26023830 // Journal website [open access]
Deposited structures: 4YNH, 4YV4
News on the University of Oxford’s Biochemistry Department webpages.
Structural analysis of the G-box domain of the microcephaly protein CPAP suggests a role in centriole architecture.
Georgios N Hatzopoulos, Michèle C Erat, Erin Cutts, Kacper B Rogala, Leanne M Slater, Philip J Stansfeld, Ioannis Vakonakis@.
Structure. 21(11):2069-77. 2013 November 5.
Reveal More
Centrioles are evolutionarily conserved eukaryotic organelles composed of a protein scaffold surrounded by sets of microtubules organized with a 9-fold radial symmetry. CPAP, a centriolar protein essential for microtubule recruitment, features a C-terminal domain of unknown structure, the G-box. A missense mutation in the G-box reduces affinity for the centriolar shuttling protein STIL and causes primary microcephaly. Here, we characterize the molecular architecture of CPAP and determine the G-box structure alone and in complex with a STIL fragment. The G-box comprises a single elongated β sheet capable of forming supramolecular assemblies. Structural and biophysical studies highlight the conserved nature of the CPAP-STIL complex. We propose that CPAP acts as a horizontal “strut” that joins the centriolar scaffold with microtubules, whereas G-box domains form perpendicular connections.
PubMed: 24076405 // Journal website [open access]
Deposited structures: 4LD1, 4LZF